Investigation of Reverse Filament Formation in ITO/HfO2-based RRAM
To overcome the large discrepancy in speed between computational devices and that of contemporary large capacity non-volatile memory (NVM) technologies, resistive random access memory (RRAM) technologies are seen as promising candidates, offering speed/energy improvements in several orders of magnitude while being 3D integration compatible [1]. Indium-Tin-Oxide (ITO) has several unique properties