Features of the Nyström method for the Sherman-Lauricella equation on Piecewise Smooth Contours
The stability of the Nyström method for the Sherman-Lauricella equation on contours with corner points $c_j$, $j=0,1,...,m$ relies on the invertibility of certain operators $A_{c_j}$ belonging to an algebra of Toeplitz operators. The operators $A_{c_j}$ do not depend on the shape of the contour, but on the opening angle $\theta_j$ of the corresponding corner $c_j$ and on parameters of the approxim
