Ring-theoretic properties of commutative algebras of invariants
The commutative algebra of invariants of a Lie super-algebra need not be affine, but does have a common ideal with an affine algebra, in all the known examples. This leads us to extend a class of algebras C to a class which we call "nearly C", by admitting those algebras C having a common ideal A with an algebra (containing C) in C such that C/A is an element of C. We generalize this notion slight
