Periodic motion planning for virtually constrained Euler-Lagrange systems
The paper suggests an explicit form of a general integral of motion for some classes of dynamical systems including n-degrees of freedom Euler-Lagrange systems subject to (n - 1) virtual holonomic constraints. The knowledge of this integral allows to extend the classical results due to Lyapunov for detecting a presence of periodic solutions for a family of second order systems, and allows to solve
