Sökresultat

Filtyp

Din sökning på "*" gav 535951 sökträffar

Cyclin-dependent kinase 2 signaling regulates myocardial ischemia/reperfusion injury

Ischemia/reperfusion (I/R) injury to the heart is accompanied by the upregulation and posttranslational modification of a number of proteins normally involved in regulating cell cycle progression. Two such proteins, cyclin-dependent kinase-2 (Cdk2) and its downstream target, the retinoblastoma gene product (Rb), also play a critical role in the control of apoptosis. Myocardial ischemia activates C

The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation

The p53 tumor suppressor restricts tumorigenesis through the transcriptional activation of target genes involved in cell-cycle arrest and apoptosis. Here, we identify Prl-3 (phosphatase of regenerating liver-3) as a p53-inducible gene. Whereas previous studies implicated Prl-3 in metastasis because of its overexpression in metastatic human colorectal cancer and its ability to promote invasiveness

p21 inhibits Cdk1 in the absence of Cdk2 to maintain the G1/S phase DNA damage checkpoint

Cdk1 was proposed to compensate for the loss of Cdk2. Here we present evidence that this is possible due to premature translocation of Cdk1 from the cytoplasm to the nucleus in the absence of Cdk2. We also investigated the consequence of loss of Cdk2 on the maintenance of the G1/S DNA damage checkpoint. Cdk2-/- mouse embryonic fibroblasts in vitro as well as regenerating liver cells after partial

CDK2 is dispensable for adult hippocampal neurogenesis

Granule neurons of the dentate gyrus (DG) of the hippocampus undergo continuous renewal throughout life. Among cell cycle regulators, cyclin-dependent kinase 2 (Cdk2) is considered as a major regulator of S-phase entry. We used Cdk2-deficient mice to decipher the requirement of Cdk2 for the generation of new neurons in the adult hippocampus. The quantification of cell cycle markers first revealed

Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone

We investigated the function of cyclin-dependent kinase 2 (Cdk2) in neural progenitor cells during postnatal development. Chondroitin sulfate proteoglycan (NG2)-expressing progenitor cells of the subventricular zone (SVZ) show no significant difference in density and proliferation between Cdk2-/- and wild-type mice at perinatal ages and are reduced only in adult Cdk2 -/- mice. Adult Cdk2-/- SVZ ce

p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice

In humans, the molecular mechanisms underlying ovarian follicle endowment and activation, which are closely related to the control of female reproduction, occurrence of menopause, and related diseases such as premature ovarian failure, are poorly understood. In the current study, we provide several lines of genetic evidence that the cyclin-dependent kinase (Cdk) inhibitor 1B (commonly known as p27

Hematopoiesis and thymic apoptosis are not affected by the loss of Cdk2

Cell cycle regulation is essential for proper homeostasis of hematopoietic cells. Cdk2 is a major regulator of S phase entry, is activated by mitogenic cytokines, and has been suggested to be involved in antigen-induced apoptosis of T lymphocytes. The role of Cdk2 in hematopoietic cells and apoptosis in vivo has not yet been addressed. To determine whether Cdk2 plays a role in these cells, we perf

Cell-specific responses to loss of cyclin-dependent kinases

Inactivation of cyclin-dependent kinases (Cdks) and/or cyclins in mice has changed our view of cell cycle regulation. In general, cells are far more resistant to the loss of Cdks than originally anticipated, suggesting widespread compensation among the Cdks. Early embryonic cells are, so far, not sensitive to the lack of multiple Cdks or cyclins. In contrast, differentiated cells are more dependen

Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest

Centrosomes organize the microtubule cytoskeleton for both interphase and mitotic functions. They are implicated in cell-cycle progression but the mechanism is unknown. Here, we show that depletion of 14 out of 15 centrosome proteins arrests human diploid cells in G1 with reduced Cdk2-cyclin A activity and that expression of a centrosome-disrupting dominant-negative construct gives similar results

Another piece of the p27Kip1 puzzle

How extracellular signals communicate with the cell cycle is poorly understood. In this issue, two papers (Grimmler et al., 2007; Chu et al., 2007) address this problem by reporting phosphorylation of the cyclin-dependent kinase inhibitor p27Kip1 on a tyrosine residue by nonreceptor tyrosine kinases, which decreases p27 stability. This new mechanism could explain how cells enter the cell cycle fro

Kinase-independent function of Cyclin E

E-type cyclins are thought to drive cell-cycle progression by activating cyclin-dependent kinases, primarily CDK2. We previously found that cyclin E-null cells failed to incorporate MCM helicase into DNA prereplication complex during G0 → S phase progression. We now report that a kinase-deficient cyclin E mutant can partially restore MCM loading and S phase entry in cyclin E-null cells. We found t

Cdk2 and Cdk4 cooperatively control the expression of Cdc2

Progression through the mammalian cell cycle is associated with the activity of four cyclin dependent kinases (Cdc2/Cdk1, Cdk2, Cdk4, and Cdk6). Knockout mouse models have provided insight into the interplay of these Cdks. Most of these models do not exhibit major cell cycle defects revealing redundancies, and suggesting that a single Cdk might be sufficient to drive the cell cycle, similar as in

Cell Division, a new open access online forum for and from the cell cycle community

Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

PRKAR1A inactivation leads to increased proliferation and decreased apoptosis in human B lymphocytes

The multiple neoplasia syndrome Carney complex (CNC) is caused by heterozygote mutations in the gene, which codes for the RIα regulatory subunit (PRKAR1A) of protein kinase A. Inactivation of PRKAR1A and the additional loss of the normal allele lead to tumors in CNC patients and increased cyclic AMP signaling in their cells, but the oncogenetic mechanisms in affected tissues remain unknown. Previo

Identification of Yin-Yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase

MAK (male germ cell-associated protein kinase) and MRK/ICK (MAK-related kinase/intestinal cell kinase) are human homologs of Ime2p in Saccharomyces cerevisiae and of Mde3 and Pit1 in Schizosaccharomyces pombe and are similar to human cyclin-dependent kinase 2 (CDK2) and extracellular signal-regulated kinase 2 (ERK2). MAK and MRK require dual phosphorylation in a TDY motif catalyzed by an unidentif

Mouse models of cell cycle regulators : New paradigms

In yeast, a single cyclin-dependent kinase (Cdk) is able to regulate diverse cell cycle transitions (S and M phases) by associating with multiple stage-specific cyclins. The evolution of multicellular organisms brought additional layers of cell cycle regulation in the form of numerous Cdks, cyclins and Cdk inhibitors to reflect the higher levels of organismal complexity. Our current knowledge abou

Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2

Cisplatin is one of the most effective chemotherapeutics, but its usefulness is limited by its toxicity to normal tissues, including cells of the kidney proximal tubule. The purpose of these studies was to determine the mechanism of cisplatin cytotoxicity. It was shown in vivo that cisplatin administration induces upregulation of the gene for the p21 cyclin-dependent kinase (cdk) inhibitor in kidn

CDK2 is required by MYC to induce apoptosis

Depending upon the cellular and physiologic context, the overexpression of the MYC proto-oncogene results in rapid cell growth, proliferation, induction of apoptosis and/or proliferative arrest. What determines the precise consequences upon MYC activation is not clear. We have found that cyclin-dependent kinase 2 (CDK2) is required by MYC to induce apoptosis. MYC-induced apoptosis was suppressed i

Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation

Mouse knockouts of Cdk2 and Cdk4 have demonstrated that, individually, these genes are not essential for viability. To investigate whether there is functional redundancy, we have generated double knockout (DKO) mice. Cdk2-/-Cdk4-/- DKOs die during embryogenesis around E15 as a result of heart defects. We observed a gradual decrease of Retinoblastoma protein (Rb) phosphorylation and reduced express