Simulating the Outcome of Heart Allocation Policies Using Deep Neural Networks
We created a system to simulate the heart allocation process in a transplant queue, using a discrete event model and a neural network algorithm, which we named the Lund Deep Learning Transplant Algorithm (LuDeLTA). LuDeLTA is utilized to predict the survival of the patients both in the queue and after transplant. We tried four different allocation policies: wait time, clinical rules and allocating