An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery
Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interve