$(\epsilon,\delta)$-Freudenthal Kantor triple systems, $\delta$-structurable algebras and Lie superalgebras
In this paper we discuss $(\epsilon,\delta)$-Freudenthal Kantor triple systems with certain structure on the subspace $L_{-2}$ of the corresponding standard embedding five graded Lie (super)algebra $L(\epsilon,\delta):=L_{-2}\oplus L_{-1}\oplus L_0\oplus L_1\oplus L_2; [L_i,L_j]\subseteq L_{i+j}$. We recall Lie and Jordan structures associated with $(\epsilon,\delta)$-Freudenthal Kantor triple sys
