Searching for high-rate convolutional codes via binary syndrome trellises
Rate R=(c-1)/c convolutional codes of constraint length nu can be represented by conventional syndrome trellises with a state complexity of s=nu or by binary syndrome trellises with a state complexity of s=nu or s=nu+1, which corresponds to at most 2^s states at each trellis level. It is shown that if the parity-check polynomials fulfill certain conditions, there exist binary syndrome trellises wi
