ON KANNAN-GERAGHTY MAPS AS AN EXTENSION OF KANNAN MAPS
Extending the concept of weakly Kannan maps on metric spaces, we study the maps as $f:X\rightarrow X$ on a metric space $(X, d)$ satisfying condition $d(f(x), f(y)) \leq (1/2)\beta(d(x, y))[d(x ,f(x)) + d(y, f(y))]$ for every $x, y\in X$ and a function $\beta: [0, \infty)\rightarrow [0,1)$ where for every sequence $t=\{t_n\}$ of non-negative real numbers satisfying $\beta(t_n)\rightarrow 1,$ while