Word problems for finite nilpotent groups
Let w be a word in k variables. For a finite nilpotent group G, a conjecture of Amit states that Nw(1) ≥ | G| k-1, where for g∈ G, the quantity Nw(g) is the number of k-tuples (g1, … , gk) ∈ G(k) such that w(g1, … , gk) = g. Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit’s conjecture, which states that Nw(g) ≥ | G| k-
