Search results

Filter

Filetype

Your search for "*" yielded 528038 hits

Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS

Gangliosides play important biological roles and structural characterization of both the carbohydrate and the lipid moieties is important. The FT-ICR MS/MS techniques of electron capture dissociation (ECD), electron detachment dissociation (EDD), and infrared multiphoton dissociation (IRMPD) provide extensive fragmentation of the protonated and deprotonated GM1 ganglioside. ECD provides extensive

Comparative proteome analysis of thalamus in MK-801-treated rats

Two-dimensional gel-electrophoresis in combination with mass spectrometry is a powerful approach to compare protein expression in brain tissues. Using this proteomic approach, and based on the hypothesis that schizophrenia involves hypoglutamergic brain function, alterations in protein levels in the thalamus of rats treated with the N-methyl-D-aspartate (NMDA) receptor antagonist [+]-5-methyl-10,1

Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease

By comparing the cerebrospinal fluid (CSF) proteome between Alzheimer's disease (AD) patients and controls, it may be possible to identify proteins that play a role in the disease process and thus to study the pathogenesis of AD. Two-dimensional gel electrophoresis (2-DE), SYPRO Ruby staining and mass spectrometry were used for clinical screening of disease-influenced CSF proteins in AD patients c

Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats

cDNA microarrays and two-dimensional gel-electrophoresis in combination with mass spectrometry, were used to screen alterations in mRNA and protein levels, respectively, in cerebral cortex of MK-801-treated rats. The rats were divided in two groups; group 1 (short-term treated) and group 2 (long-term treated). In group 1, four genes were up-regulated and five down-regulated. In group 2, seven gene

Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins

Comparative proteomic analysis of cerebrospinal fluid (CSF) proteins was employed for studies of the pathophysiological mechanisms in frontotemporal dementia (FTD). Two-dimensional gel electrophoresis and mass spectrometry were used for clinical screening of disease-influenced CSF proteins in 15 FTD patients compared to 12 controls. Six proteins were significantly altered in FTD compared to contro

Proteomic study of non-typable Haemophilus influenzae

Non-typable Haemophilus influenzae (NTHi) are small, gram-negative bacteria and are strictly human pathogens, causing acute otitis media, sinusitis and community-acquired pneumonia. There is no vaccine available for NTHi, as there is for H. influenzae type b. Recent advances in proteomic techniques are finding novel applications in the field of vaccinology. There are several protein separation tec

High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2'-alpha-L-fucosyllactose and correlation with thermodynamic binding data

The primary sequence of Erythrina cristagalli lectin (ECL) was mapped by mass spectrometry, and the crystal structures of the lectin in complex with lactose and 2'-alpha-L-fucosyllactose were determined at 1.6A and 1.7A resolution, respectively. The two complexes were compared with the crystal structure of the closely related Erythrina corallodendron lectin (ECorL) in complex with lactose, with th

Bacterial proteomics and vaccine development

Until recently, the development of vaccines for use in humans relied on the response to attenuated or whole-cell preparations, or empirically selected antigens. The post-genomic era holds the possibility of rational design of novel vaccines for important human pathogens. The discovery and development of these new vaccines is likely to be accomplished through integrated proteomic strategies. Althou

Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients

By comparing the CSF proteome between Alzheimer disease (AD) patients and controls it may be possible to identify proteins that play a role in the disease process and thus to study the pathogenesis of AD. We used mini-gel technology in a two-dimensional electrophoresis procedure, sensitive SYPRO Ruby staining and mass spectrometry for clinical screening of disease-influenced CSF proteins in 15 AD

Characterization of the P13 membrane protein of Borrelia burgdorferi by mass spectrometry

Borrelia burgdorferi sensu lato is a tick-borne pathogen that causes Lyme disease. The characterization of membrane proteins from this and other pathogens may yield a better understanding of the mechanisms of infection and information useful for vaccine design. Characterization of the highly hydrophobic Borrelia outer membrane component P13 from a mutant (OspA- OspB- OspC- and OspD-) strain was un

Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry

A preparative proteomic approach, involving liquid phase isoelectric focusing (IEF) in combination with one-dimensional electrophoresis and electroelution followed by mass spectrometry and database searches, was found to be an important tool for identifying low-abundant proteins (microgram/L) in human cerebrospinal fluid (CSF) and membrane proteins in human frontal cortex. Several neuron-related p

Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information

Glycoproteins are a functionally important class of biomolecules for which structural elucidation presents a challenge. Fragmentation of N-glycosylated peptides, employing collisionally activated dissociation, typically yields product ions that result from dissociation at glycosidic bonds, with little occurrence of dissociation at peptide backbone sites. We have applied two dissociation techniques

Identification of proteins from Escherichia coli using two-dimensional semi-preparative electrophoresis and mass spectrometry

Escherichia coli is a gram-negative bacterium that causes sepsis and infections of the nervous system, and the digestive and urinary tracts. The availability of the complete nucleotide sequence encoding the E. coli K-12 genome has made this organism an excellent model for proteomic studies. Semi-preparative two-dimensional electrophoresis, including liquid phase isoelectric focusing (IEF), one-dim

New separation tools for comprehensive studies of protein expression by mass spectrometry

Mass spectrometry has emerged as a core technique for protein identification and characterization because of its high sensitivity, accuracy, and speed of analysis. The most widespread strategy for studying global protein expression in biological systems employs analytical two-dimensional polyacrylamide gel electrophoresis (2D PAGE) followed by enzymatic degradation of isolated protein spots, pepti