A Proactive Cloud Application Auto-Scaler using Reinforcement Learning
This work explores the use of reinforcement learning to design a proactive cloud resource auto-scaler that is able to predict usage across a distributed microservice application. The focus is on serving time-sensitive workloads, e.g., industrial automation, connected XR/VR (eXtended Reality/Virtual Reality), etc., where each job has a deadline and there is some cost associated with missing a deadl