Search results
Filter
Filetype
Your search for "*" yielded 535743 hits
Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance
textcopyright 2017 John Wiley Sons Ltd. The effective population size (N e ) is a central factor in determining maintenance of genetic variation. The neutral theory predicts that loss of variation depends on N e , with less genetic drift in larger populations. We monitored genetic drift in 42 Drosophila melanogaster populations of different adult census population sizes (10, 50 or 500) using poole
Nucleotide diversity inflation as a genome- wide response to experimental lifespan extension in Drosophila melanogaster
Background: Evolutionary theory predicts that antagonistically selected alleles, such as those with divergent pleiotropic effects in early and late life, may often reach intermediate population frequencies due to balancing selection, an elusive process when sought out empirically. Alternatively, genetic diversity may increase as a result of positive frequency-dependent selection and genetic purgin
Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster
The ability of ectotherms to respond to changes in their thermal environment through plastic mechanisms is central to their adaptive capability. However, we still lack knowledge on the physiological and functional responses by which ectotherms acclimate to temperatures during development, and in particular, how physiological stress at extreme temperatures may counteract beneficial acclimation resp
Extreme allomaternal care and unequal task participation by unmated females in a cooperatively breeding spider
Division of reproductive behaviour and alloparental care are key aspects of many animal societies. In cooperatively breeding species, variation in helping effort and unequal task participation are frequently observed. However, the extent to which the reproductive state of an individual affects the tasks performed during offspring care remains poorly understood. In the social spider Stegodyphus dum
Strong costs and benefits of winter acclimatization in Drosophila melanogaster
Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclima-tion responses under such conditions may not reflect costs and benefits in natural popula-tions subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance lim
A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future.
The ability to respond evolutionarily to increasing temperatures is important for survival of ectotherms in a changing climate. Recent studies suggest that upper thermal limits may be evolutionary constrained. We address this hypothesis in a laboratory evolution experiment, encompassing ecologically relevant thermal regimes. To examine the potential for species to respond to climate change, we exp
Biotic and abiotic factors investigated in two Drosophila species – evidence of both negative and positive effects of interactions on performance
Multiple environmental factors acting in concert can interact and strongly influence population fitness and ecosystem composition. Studies investigating interactions usually involve only two environmental factors; most frequently a chemical and another abiotic factor such as a stressful temperature. Here we investigate the effects of three environmental factors: temperature, an insecticide (dimeth
Fast egg collection method greatly improves randomness of egg sampling in Drosophila melanogaster
When obtaining samples for population genetic studies, it is essential that the sampling is random. For Drosophila, one of the crucial steps in sampling experimental flies is the collection of eggs. Here an egg collection method is presented, which randomizes the eggs in a water column and diminishes environmental variance. This method was compared with a traditional egg collection method where eg
Inbreeding depression across a nutritional stress continuum
Many natural populations experience inbreeding and genetic drift as a consequence of nonrandom mating or low population size. Furthermore, they face environmental challenges that may interact synergistically with deleterious consequences of increased homozygosity and further decrease fitness. Most studies on inbreeding–environment (I-E) interactions use one or two stress levels, whereby the resolu
Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophila melanogaster
Inbreeding increases homozygosity, which is known to affect the mean and variance of fitness components such as growth, fecundity and mortality rate. Across inbred lines inbreeding depression is typically observed and the variance between lines is increased in inbred compared to outbred lines. It has been suggested that damage incurred from increased homozygosity entails energetic cost associated
Linear reaction norms of thermal limits in Drosophila : Predictable plasticity in cold but not in heat tolerance
* Thermal limits of ectotherms have been studied extensively and are believed to be evolutionarily constrained, leaving ectotherms at risk under future climate change. Phenotypic plasticity may extend the thermal limits, but we lack detailed characterizations of thermal limit reaction norms as well as an understanding of the interspecific variation in these reaction norms. * Here, we investigated
Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura
There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, how
Inbreeding affects locomotor activity in Drosophila melanogaster at different ages
The ability to move is essential for many behavioural traits closely related to fitness. Here we studied the effect of inbreeding on locomotor activity (LA) of Drosophila melanogaster at different ages under both dark and light regimes. We expected to find a decreased LA in inbred lines compared to control lines. We also predicted an increased differentiation between lines due to inbreeding. LA wa
Bokhandeln mellan kultur och ekonomi
Fitness components of Drosophila melanogaster developed on a standard laboratory diet or a typical natural food source.
Drosophila melanogaster is often used as a model organism in evolutionary biology and ecophysiology to study evolutionary processes and their physiological mechanisms. Diets used to feed Drosophila cultures differ between laboratories and are often nutritious and distinct from food sources in the natural habitat. Here we rear D. melanogaster on a standard diet used in our laboratory and a field di
Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation
Physiological adaptation through acclimation is one way to cope with temperature changes. Biochemical studies on acclimation responses in ectotherms have so far mainly investigated consequences of short-term acclimation at the adult stage and focussed on adaptive responses. Here, we assessed the consequences of rearing Drosophila melanogaster at low (12°C), benign (25°C) and high (31°C) temperatur
Trait-specific consequences of inbreeding on adaptive phenotypic plasticity
Environmental changes may stress organisms and stimulate an adaptive phenotypic response. Effects of inbreeding often interact with the environment and can decrease fitness of inbred individuals exposed to stress more so than that of outbred individuals. Such an interaction may stem from a reduced ability of inbred individuals to respond plastically to environmental stress; however, this hypothesi
No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population
Coping with cold winter conditions is a major challenge for many insects.In early spring we observed newly emerged Drosophila subobscura, which had overwintered as larvae and pupae. As temperatures increase during spring these flies are faced with higher minimum and maximum temperatures in their natural microhabitat. Thus, there is a potential costly mismatch between winter and early spring acclim
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature
Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster