Stability of the Nyström Method for the Sherman–Lauricella Equation
The stability of the Nyström method for the Sherman–Lauricella equation on piecewise smooth closed simple contour $\Gamma$ is studied. It is shown that in the space $L_2$ the method is stable if and only if certain operators associated with the corner points of $\Gamma$ are invertible. If $\Gamma$ does not have corner points, the method is always stable. Numerical experiments show the transformati
