No title
Lunds Tekniska Högskola Matematik Helsingborg Lösningar, FMSF40 Sannolikhetsteori och Diskret Matematik 2023-10-27 1. a) Vi har 1 = ∫ ∞ −∞ f(x) dx = ∫ 0 −∞ k · e3x dx+ ∫ ∞ 0 1 3 e−x dx = [ k · 1 3 e3x ]0 −∞ + [ 1 3 · 1 −1 · e−x ]∞ 0 = k · 1 3 − 0 + 0− ( −1 3 ) = k 3 + 1 3 = k+1 3 . Vi har allts̊a 1 = k+1 3 vilket ger k = 2. b) Om x ≤ 0 gäller F (x) = ∫ x −∞ f(t) dt = ∫ x −∞ 2e3t dt = [ 2 · 1 3
